

FRACTIONS 3 STUDENT PACKET

FRACTION MULTIPLICATION AND DIVISION

My Wor	d Bank		0
FR3.0	Opening Problem: The Cookie Jar		1
FR3.1	 Fraction Multiplication Use pictures and contexts to und Make sense of the fraction multiplication rul Use the fraction multiplication rul 	erstand fraction multiplication. ly-across rule. e to solve problems.	2
FR3.2	 Fraction Division: Divide-Across Use pictures to understand fraction Make sense of the fraction divide Use the divide-across rule to solve 	on division. -across rule re problems.	10
FR3.3	 Fraction Division: Multiply-by-the- Use the inverse relationship betw to make sense of the multiply-by- Use the standard fraction division 	Reciprocal veen multiplication and division the-reciprocal rule. In rule to solve problems.	15
FR3.4	Review		21
FR3.5	Definitions, Explanations, and Exa	amples	25

Parent (or Guardian) signature _____

MY WORD BANK

Explain the mathematical meaning of each word or phrase, using pictures and examples when possible. (See section 3.5.) Key mathematical vocabulary is underlined throughout the packet.

commutative property of multiplication	distributive property
product	quotient
reciprocal	word of your choice:

OPENING PROBLEM: THE COOKIE JAR

FRACTION MULTIPLICATION

We will use pictures and procedures to multiply fractions.

GETTING STARTED

1. Draw 3 groups, each having 5 dots.

How many total dots is this? _____

2. Draw 5 groups, each having 3 dots.

How many total dots is this?

3. How does the commutative property of multiplication relate to problems 1 and 2?

Find this term in section 3.5 and record it in My Word Bank.

- 4. Rewrite 4 6 as a repeated addition expression.
- 5. Rewrite 6 4 as a repeated addition expression.
- 6. Compute mentally.

FOOD FRACTIONS 1

Follow your teacher's directions to explore some fraction problems.

PRACTICE 1

Fill in the table. Some of the diagrams have been started for you.

	Verbal Interpretation	Multiplication Expression	Diagram	Product
1.	3 groups of $\frac{1}{6}$			
2.		$\frac{1}{6}(3)$		
3.	4 groups of $\frac{2}{3}$			
4.		³ / ₄ (6)		

- 5. Explain how problems 1 and 2 connect to the commutative property of multiplication.
- 6. Agnes said that the product in problem 3 is "eight over three." Write in words a more precise way to express this fraction's value.

Compute.		
7. $4\left(\frac{2}{9}\right)$	$8. \qquad 10\left(\frac{7}{11}\right)$	9. $\frac{3}{10}(100)$

10. Describe in words how to multiply a whole number times a proper fraction.

FOOD FRACTIONS 2

Follow your teacher's directions to explore some fraction problems.

PRACTICE 2

	Multiplication Expression	Verbal Interpretation	Diagram	Product
1.	$\frac{1}{2} \cdot \frac{2}{3}$			
2.		$\frac{1}{3}$ of a group of $\frac{2}{3}$		
3.	$\frac{1}{2}\left(\frac{1}{6}\right)$			
4.		$\frac{1}{4}$ of a group of $\frac{3}{4}$		
5.	$\frac{2}{3} \times \frac{3}{4}$			
6.		$\frac{2}{5}$ of a group of $\frac{2}{3}$		

Fill in the table and find the products of these proper fractions.

7. Write a short story that can be represented by $\frac{1}{2} \cdot \frac{2}{5} = \frac{2}{10}$.

8. Write the multiply-across rule for fraction multiplication. It can be found in section 3.5. Words: Symbols: $\frac{a}{b} \cdot \frac{c}{d} = ---- (b \neq 0, d \neq 0)$

A FRACTION MULTIPLICATION SHORTCUT

Follow your teacher's directions for (1), (2), and (3).

MULTIPLYING MIXED NUMBERS

Follow your teacher's directions for problems 1-5.

(1)	people each eat	_ slices of toast.	Work:
	Picture:		
-	There are whole slices	of toast in all.	
	Circle the step in your work to using the <u>distributive property</u> . explanation and example in M	the right that illustrates Complete an y Word Bank.	S
(2)	(3		(4)

(5)	

Compute.

MathLinks: Essentials ©CMAT (Fractions 3: Student Packet)

PRACTICE 3

12. In the opening Cookie Jar Problem, we found that there were 12 cookies at the beginning. Kaelen has $\frac{1}{4}$ of $\frac{4}{12}$ of those 12 cookies. Write a multiplication expression to represent this. Then compute the number of cookies Kaelen has based on this expression.

FRACTION DIVISION: DIVIDE-ACROSS

We will use pictures and procedures to divide fractions.

GETTING STARTED

Compute.		
1. $\frac{2}{5} + \frac{3}{4}$	2. $\frac{8}{9} - \frac{5}{6}$	3. $\frac{5}{8} \cdot \frac{4}{5}$

4. Use your knowledge of fraction multiplication to fill in the blank.

• $\frac{3}{11} = \frac{6}{55}$

Simplify. Show work.

	_					
5	7	6	18			
5.	35	0.	30			

7. Find <u>quotient</u> in section 3.5 and write an explanation and example in My Word Bank.

8. Circle all of the expressions below that could represent 6 ÷ 3.					
a. $\frac{6}{3}$	b.	How many 3's go into 6?			
c. $\frac{3}{6}$	d.	How many 3's does it take to make 6?			
e. How many 6's are in 3?	f.	How many groups of 3 are there in 6?			
9. Write a short story that can be represented by $6 \div 3 = 2$.					

EXPLORING DIVIDE-ACROSS

Follow your teacher's directions to explore fraction division problems 1-4.

Words	Dia	igram	Division Statement	Quotient
(1) How many groups of				
are in ?				
(2) How many groups of				
are in ?				
(3) How many groups of				
are in ?				
(4) How many groups of				
are in ?				

Use your knowledge of the relationship between multiplication and division to fill in the blanks. For each problem, the same number must go into _____ or ____.

	Multiplication Problem	Related Division Problem	Divide Across	Equal Quotients?
5.	• 4 = 8	8 ÷ 4 =		
6.	$\frac{1}{10} \cdot \frac{4}{10} = \frac{8}{10}$	$\frac{8}{10} \div \frac{4}{10} = \bigcirc$	$\frac{8 \div 4}{10 \div 10} = \boxed{\phantom{10000000000000000000000000000000000$	
7.	$\mathbf{-}\mathbf{-}\mathbf{-}5\mathbf{-}$	$\frac{5}{10} \div \frac{5}{5} = $	$\frac{5 \div 5}{10 \div 5} = \square$	
8.	$-\frac{4}{3} = \frac{8}{15}$	$\frac{8}{15} \div \frac{4}{3} = $	$\frac{8 \div 4}{15 \div 3} = \boxed{}$	

9. Does it appear that dividing across works?

THE DIVIDE-ACROSS RULE

Follow your teacher's directions.

(1) – (3) Connor eats of a small cake.	(4) – (6) Mia eats cup of cereal. A
A serving is cake. How many servings	serving size is cup. How many
does Connor eat?	servings does Mia eat?
How many servings of are in?	How many servings of are in?
Division Problem:	Division Problem:
Diagram:	Diagram:
Computation:	Computation:
Answer question:	Answer question:

(7) What is the divide-across rule for fractions?

Words:

Symbols:

PRACTICE 4

Chase has 1¹/₂ sandwiches leftover from yesterday's party. A serving size is ³/₄ of a sandwich. How many servings does he have?
 Represent this situation with a picture and a Then perform the divide-across procedure. Clearly show your work, and the result.

2.	$\frac{1}{3} \div \frac{5}{9}$	3. $\frac{1}{2} \div \frac{3}{5}$ 4. $2\frac{1}{8} \div \frac{3}{4}$
5.	$1\frac{3}{4} \div \frac{1}{2}$	6. $1\frac{1}{8} \div 4\frac{1}{2}$ 7. $\frac{1}{2} \div 4$

8. And rea tried to calculate $2\frac{2}{3} \div \frac{4}{5}$ as illustrated below and got stuck.

$$2\frac{2}{3} \div \frac{4}{5} = \frac{8}{3} \div \frac{4}{5} = \frac{2}{\frac{3}{5}}$$

Even though she did nothing wrong, show a different approach that might be more successful for her.

Fraction Multiplication and Division

	PRAC	FICE 5
1.	A 2-foot-long sandwich is cut into portions that are $\frac{3}{4}$ feet long each.	2. A 4-foot-long board is cut into shelves that are $1\frac{1}{4}$ feet long each.
	a. Write a division expression that represents this situation.	a. Write a division expression that represents this situation.
	Words:	Words:
	Numbers:	Numbers:
	b. Use a diagram to show the full portions that can be cut and any leftover part.	b. Use a diagram to show the full shelves that can be cut and any leftover part.
	c. Solve using the divide-across rule.	c. Solve using the divide-across rule.
	d. How many full portions can be cut?	d. How many full shelves can be cut?
	e. How long is the piece that is leftover?	e. How long is the piece that is leftover?
	f. What fraction of a portion is leftover?	f. What fraction of a shelf is leftover?
	g. Check your solution by multiplication.	g. Check your solution by multiplication.

MathLinks: Essentials ©CMAT (Fractions 3: Student Packet)

FRACTION DIVISION: MULTIPLY-BY-THE-RECIPROCAL

We will use the inverse relationship between multiplication and division and the divideacross rule to make sense of a common fraction division rule.

GETTING STARTED 1. Find reciprocal in section 3.5 and write an explanation of it in My Word Bank. 2. Write the reciprocals of each of the following numbers. 4 5 a. 3 3. The following pairs of numbers are reciprocals of one another. Multiply each pair of reciprocals. $\frac{5}{7}$ and $\frac{7}{5}$ b. 5 and

- c. What is the result when a number is multiplied by its reciprocal? 1
- 4. Describe an easy way to find the reciprocal of a fraction.
- 5. What is the reciprocal of $\frac{a}{b}$? $\frac{b}{a}$

a.

- 6. Why is $\frac{2}{3}$ the reciprocal of $1\frac{1}{2}$?
- 7. What is the reciprocal of $2\frac{3}{5}$?

EXPLORING MULTIPLY-BY-THE-RECIPROCAL

- 1. Compute.
 - a. $12 \div 4$ b. $\frac{1}{4}$ of 12 c. $12 \cdot \frac{1}{4}$ d. Does dividing by 4 and multiplying by $\frac{1}{4}$ produce the same result?
- 2. Compute. Use the divide-across rule in Column I and the multiply-across rule in Column II.

	Column I Divide-across	Column II Multiply-across	Equal Results?
	dividend ÷ divisor = quotient	first factor × second factor = product	
a.	$\frac{10}{21} \div \frac{2}{7}$	$\frac{10}{21} \bullet \frac{7}{2}$	
	7 1	7 4	
b.	$\overline{8} \div \overline{4}$	8 1	
C.	$\frac{2}{3} \div \frac{1}{6}$	$\frac{2}{3} \cdot \frac{6}{1}$	
d.	$\frac{1}{6} \div \frac{2}{3}$	$\frac{1}{6} \cdot \frac{3}{2}$	

- 3. For each pair in problem 2 above, compare Column I and Column II.
- a. How do the dividends compare to the first factors?
- b. How do the divisors compare to the second factors?
- c. How do the quotients compare to the products?
- d. Based on these examples, it appears that dividing by a number gives the same result as multiplying by the ______ of the _____.

MULTIPLY-BY-THE-RECIPROCAL RULE

On the previous page you observed that dividing by a number gives the same result as multiplying-by-the-reciprocal of the divisor.

Compute. Use the divide-across rule for Column A and test the multiply-by-the-reciprocal statement for Column B.

	Column A Divide-across	Column B Equal Multiply-by-the-reciprocal Results?
1.	$\frac{3}{4} \div \frac{5}{8}$	
2.	$\frac{2}{3} \div \frac{1}{2}$	
3.	$5 \div \frac{1}{6}$	
4.	$3\frac{1}{2} \div 4$	

5. What is the multiply-by-the-reciprocal rule for fractions? Use section 3.5 if needed. Words:

Symbols:

6. Explain in words how to apply this rule to compute $3 \div 1\frac{1}{2}$.

PRACTICE 6

- 1. Write the reciprocal of each number.
 - a. 8 b. $\frac{1}{3}$ c. $\frac{5}{9}$ d. $2\frac{3}{4}$

Compute. Use the divide-across rule for Column A and the multiply-by-the-reciprocal rule for Column B.

	Column A Divide-across	Column B Multiply-by-the-reciprocal	Equal Results?
2.	$\frac{5}{6} \div \frac{1}{8}$		
3.	$3 \div \frac{2}{3}$		
4.	$1\frac{1}{4} \div 2$		

Compute using any method.

5. $\frac{9}{10} \div \frac{3}{5}$	6. $6 \div \frac{3}{4}$	7. $2\frac{1}{4} \div 1\frac{1}{6}$
10 5	4	4 0

8. Hector runs 3 miles around the perimeter of a park. One lap around is $\frac{2}{3}$ miles. How many full laps does he run? What fraction of a lap does he run at the end?

a. Solve with a picture.	b. Solve by computing:
c. Answer the questions.	
Hector runs full laps around the park and then a	nother lap.

A DIVISION PATTERN

Study the pattern that has been started below.

WHY DOESN'T IT BELONG?

- 1. Choose one expression (A-D) at a time and explain why it does not belong with the other three expressions.
 - A does not belong because...
- B does not belong because...
- C does not belong because...
- D does not belong because...

2. Find the results (sum, product, and quotients) of the four expressions above.

A.	В.
C.	D.

3. Chantal said, "I think all four expressions belong." What could she have meant by this?

REVIEW

A COOKIE RECIPE

	A Deee-Lightful Chocol	ate Chip Cookie Recipe
1	cup butter	$\frac{1}{2}$ teaspoon salt
1	teaspoon baking soda	$\frac{3}{4}$ cup white sugar
1	teaspoon vanilla	2
1	egg	$\frac{1}{3}$ cup brown sugar
12	ounces semi-sweet chocolate chips	$2\frac{1}{4}$ cups all purpose flour

Find the amount of each item needed (units are not necessary) when the recipe is:

		Doubled	Quadrupled	Cut in Half	Cut in Thirds
1.	eggs (number)				
2.	chocolate chips (ounces)				
3.	salt (teaspoons)				
4.	white sugar (cups)				
5.	brown sugar (cups)				
6.	flour (cups)				

7. Circle one measurement that might not make sense for a given ingredient above, and explain why. What would you do about it if you were making this amount of cookies?

FRACTION DIVISION TARGETS

In each of the following problems use this forma digits 1–9, no more than once each. There may correct answer for each.	at and four of the be more than one
1. Find any quotient.	
2. Find a quotient as close to 1 as possible.	
3. Find the greatest possible quotient.	
4. Find the least possible quotient.	

POSTER PROBLEM

Part 1: Your teacher will divide you into groups.

- Identify members of your group as A, B, C, or D. •
- Each group will start at a numbered poster. Our group start poster is •
- Each group will have a different colored marker. Our group marker is ۲

Part 2: Do the problems on the posters by following your teacher's directions.					
Po	oster 1 (or 5)	Poster 2 (or 6)	Poster 3 (or 7)	Poster 4 (or 8)	
Allie f fabric make each of fab	has $2\frac{1}{3}$ feet of . She wants to pillows that require $\frac{1}{2}$ feet ric.	Olivia has 4 feet of fabric. She wants to make pillows that each require $\frac{3}{4}$ feet of fabric.	Monica has 5 feet of fabric. She wants to make pillows that each require $1\frac{1}{4}$ feet of fabric.	Michela has $4\frac{1}{3}$ feet of fabric. She wants to make pillows that each require $1\frac{2}{3}$ feet of fabric.	
A. Copy the main facts of the problem, write a division statement, and draw a picture to represent the problem.					
В.	3. Answer: How many full pillows can be made? How long is the left over fabric? What fraction of a pillow does the leftover fabric represent?				
C.	C. Compute using the divide-across rule.				
D.	D. Compute using the multiply-by-the-reciprocal rule.				

Part 3: Return to your seats. Work with your group, and show all work.

Write a problem that has a mixed number for fabric length in feet, a fraction for pillow length in feet, and there is no leftover fabric.

VOCABULARY REVIEW

Across

Down

3

4

- To divide by a number, multiply by its 1
- Dividing two mixed numbers is simpler 5 if they are changed to _____ fractions.
- $4\left(2+\frac{1}{2}\right) = 4(2) + 4\left(\frac{1}{2}\right)$ is an example of the ____ property.
- In the equation $\frac{3}{2} \cdot \frac{1}{3} = \frac{1}{2}$, the number 6 9 $\frac{1}{3}$ is a(n) _____.
- 10 In the equation $2 \div \frac{1}{3} = 6$, the number 7 In the equation $2 \div \frac{1}{3} = 6$, the number 6 is the .

- We can always divide-across with fractions that have <u>denominators</u>. 2
 - In the equation $2 \div \frac{1}{3} = 6$, the number 2 is the ____.
 - The ____ property of multiplication tells us that we can multiply two numbers in any order.
 - In the equation $\frac{3}{2} \cdot \frac{1}{3} = \frac{1}{2}$, the number $\frac{1}{2}$ is the ____.
 - $\frac{1}{3}$ is the ____.

DEFINITIONS, EXPLANATIONS, AND EXAMPLES

Word or Phrase	Definition		
commutative property of multiplication	The <u>commutative property of multiplication</u> states that $a \cdot b = b \cdot a$ for any two numbers a and b. In other words, changing the order of the factors does not change the product. $3 \cdot 5 = 5 \cdot 3$		
distributive property	The distributive property states that $a(b + c) = ab + ac$ and $(b + c)a = ba + ca$ for any three numbers a , b , and c . 3(4 + 5) = 3(4) + 3(5) and $(2 + 7)8 = 2(8) + 7(8)$		
division	<u>Division</u> is the mathematical operation that is inverse to multiplication. For $b \neq 0$, <u>division by b</u> is multiplication by the multiplicative inverse $\frac{1}{b}$ of b, $a \div b = a \bullet \frac{1}{b}$.		
	$4 \div 3 = 4 \bullet \frac{1}{3}$		
	In a division problem, the number a to be divided is the <u>dividend</u> , the number b by which a is divided is the <u>divisor</u> , and the result $a \div b$ of the division is the <u>quotient</u> :		
	$\frac{\text{dividend}}{\text{divisor}} = \text{quotient} \qquad \frac{\frac{\text{dividend}}{\text{divisor}}}{\text{divisor}} = \text{quotient}$		
product	A <u>product</u> is the result of multiplying two or more numbers or expressions. The numbers or expressions being multiplied to form the product are <u>factors</u> of the product.		
	factor • factor = product $7 \cdot 8 = 56.$		
quotient	In a division problem, the <u>quotient</u> is the result of the division.		
	dividend \div divisor = quotient 12 \div 3 = 4		
reciprocal	For $b \neq 0$, the <u>reciprocal</u> of <i>b</i> is the number, denoted by $\frac{1}{b}$, that satisfies $b \cdot \frac{1}{b} = 1$. The reciprocal of <i>b</i> is also called the <u>multiplicative inverse</u> of <i>b</i> .		
	The reciprocal of 3 is $\frac{1}{3}$. The reciprocal of $\frac{1}{6}$ is 6.		
	The reciprocal of $\frac{4}{5}$ is $\frac{5}{4}$.		

Fraction Multiplication and Division

Fraction Multiplication and Division

Example: Multiplying Fractions						
Words	Diagrams	Use the multiply-across rule	Use the shortcut notation			
A puppy eats two times per day. If the puppy eats $\frac{3}{4}$ cup of kibble at each feeding, how	Start with two groups of $\frac{3}{4}$ (shaded) Combine the parts $\frac{3}{4} + \frac{3}{4} = \frac{6}{4} = 1\frac{2}{4} = 1\frac{1}{2}$	$2 \times \frac{3}{4} = \frac{2}{1} \times \frac{3}{4}$ $= \frac{6}{4}$	$2 \times \frac{3}{4} = \frac{1}{2} \times \frac{3}{4} = \frac{1 \times 3}{1 \times 2}$			
much does it eat in one day?		$=\frac{3}{2}$	$=\frac{3}{2}$			

Visualizing Fraction Division as "Divvie Up"				
A "divvie up" division problem poses the question:				
"How can we divide into equal groups?				
Suppose we want to divide $\frac{3}{4}$ cups of grape juice equally among two people. This division problem $\frac{3}{4} \div 2$, can				
be interpreted as "how can we divide $\frac{3}{4}$ into 2 equal parts?				
Let the rectangle represent 1 full cup. It is filled with $\frac{3}{4}$ cups of grape juice.				
From the diagram we see that each person will get $\frac{3}{8}$ cup of juice.				
Therefore, $\frac{3}{4} \div 2 = \frac{3}{8}$.				

Rules for Dividing Fractions

Divide-across

The divide-across rule states that we can divide numerators and divide denominators to find the quotient.

$$\frac{a}{b} \div \frac{c}{d} = \frac{a \div c}{b \div d} \qquad b \neq 0, \ d \neq 0$$

Example 1: $\frac{8}{9} \div \frac{2}{3} = \frac{8 \div 2}{9 \div 3} = \frac{4}{3} = 1\frac{1}{3}$

Notice that for this example, the numbers are "friendly." In other words, 2 divides 8 evenly, and 3 divides 9 evenly.

What if this is not the case? Use equivalent fractions with common denominators.

Example 2:
$$\frac{1}{4} \div \frac{2}{3} = \frac{3}{12} \div \frac{8}{12} = \frac{3 \div 8}{12 \div 12} = \frac{\frac{3}{8}}{1} = \frac{3}{8}$$

In general, we can divide any fraction by any fraction (assuming the divisor is not zero) by finding common denominators first. When we have common denominators, the divide-across rule states:

$$\frac{a}{b} \div \frac{c}{b} = \frac{a \div c}{b \div b} = \frac{a \div c}{1} = \frac{a}{c} \qquad b \neq 0, \ c \neq 0$$

Multiply-by-the-Reciprocal

The multiply-by-the-reciprocal rule states that dividing by a number is equivalent to multiplying by its reciprocal. In other words, to find the quotient, change the divisor to its reciprocal and multiply.

 $\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \bullet \frac{d}{c} \qquad b \neq 0, \ d \neq 0, \ c \neq 0$ Example: $\frac{8}{9} \div \frac{2}{3} = \frac{4}{3} \frac{8}{\cancel{9}} \bullet \frac{\cancel{3}^{1}}{\cancel{2}_{1}} = \frac{4}{3} = 1\frac{1}{3}$

Examples: Dividing Fractions						
Words and Diagrams	Divide-Across	Multiply-by-the-Reciprocal				
How many $\frac{1}{2}$ s are in $\frac{3}{4}$?	$\frac{3}{4} \div \frac{1}{2} = \frac{3 \div 1}{4 \div 2}$ "friendly numbers" $= \frac{3}{2} = 1\frac{1}{2}$	$\frac{3}{4} \div \frac{1}{2} = \frac{3}{4} \times \frac{2}{1}$ $= \frac{3 \times 2}{4 \times 1}$ $= \frac{6}{4} = \frac{3}{2} = 1\frac{1}{2}$				
How many $\frac{3}{4}$ s are in $\frac{1}{2}$?	$\frac{1}{2} \div \frac{3}{4} = \frac{2}{4} \div \frac{3}{4}$ $= \frac{2 \div 3}{4 \div 4} = \frac{2 \div 3}{1}$ NOT "friendly numbers"; use common denominators $= \frac{2}{3} = \frac{2}{3}$	$\frac{1}{2} \div \frac{3}{4} = \frac{1}{2} \times \frac{4}{3}$ $= \frac{1 \times 4}{2 \times 3}$ $= \frac{4}{6} = \frac{2}{3}$				
Christine's dog Barkley eats $\frac{3}{4}$ can of food at each meal. How many meals can Barkley eat with $1\frac{1}{2}$ cans of food?	$1\frac{1}{2} \div \frac{3}{4}$ $= \frac{3}{2} \div \frac{3}{4}$ $= \frac{6}{4} \div \frac{3}{4}$ $= \frac{6 \div 3}{4 \div 4}$ $= \frac{2}{1} = 2$ Barkley can eat 2 meals.	$1\frac{1}{2} \div \frac{3}{4}$ $= \frac{3}{2} \div \frac{3}{4}$ $= \frac{3}{2} \times \frac{4}{3}$ $= \frac{3 \times 4}{2 \times 3}$ $= \frac{12}{6} = 2$ Barkley can eat 2 meals.				
Bobbie's dog Charlie eats $\frac{3}{4}$ can of food at each meal. How many meals can Charlie eat with 2 cans of food?	$2 \div \frac{3}{4} = \frac{8}{4} \div \frac{3}{4}$ $= \frac{8 \div 3}{4 \div 4}$ $= \frac{\frac{1}{2} \operatorname{can}}{\operatorname{represents}}$ $= \frac{\frac{8}{3}}{1} = \frac{8}{3} = 2\frac{2}{3}$ Charlie can eat $2\frac{2}{3}$ meals.	$2 \div \frac{3}{4} = \frac{2}{1} \times \frac{4}{3}$ $= \frac{8}{3} = 2\frac{2}{3}$ Charlie can eat $2\frac{2}{3}$ meals.				

